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DECOMPOSITION OF THE
STATIONARY ISOTROPIC TRANSPORT OPERATOR
IN THREE INDEPENDENT SPACE VARIABLES

by

Erwin H. Bareiss

ABSTRACT

Based on the idea of separation of variables, a de-
composition of the three-dimensional linear transport oper-
ator is carried out, resulting in continuous sets of regular
and generalized eigenfunctions. Because of the nonself-
adjoint nature of this operator, the results could not be
anticipated intuitively from the known decomposition of this
operator in the special case of plane geometry. The results
obtained may indicate a new approach to spectral theory.

1. INTRODUCTION

The decomposition of a linear transport operator for plane geometry
has been successfully attempted in several different ways (see References 1
to 4). Whether explicitly expressed in these papers or not, each one tried
to build a spectral theory for this operator.

In this report, a decomposition of the transport operator in three
space-dimensions is carried out. The general idea is that of References 2
and 3, for the author was unable to generalize his ideas in References 1.
The reason, obviously, is that the transport operator is not self-adjoint,
and therefore no general spectral theory exists for it, as of today. The re-
sults of the expansion theorem proved rather surprising and could not be
anticipated by intuition. On the other hand, the known expansion theorem
for plane geometry with its much simpler structure is, of course, a special
case of the general theory. The method used in this paper is suggested by
the principle of separation of variables, which is widely used for the decom-
position of linear partial differential equations of mathematical physics. To
attempt completeness, it was necessary to add to the set of regular eigen-
functions, 10%(&'2), over a complex continuum, a set of generalized eigenfunc-
tions, wA(Q), over a complex continuum of even higher dimension.

The regular eigenfunctions are not characterized by an eigenvalue,
but by a complex vector which we may call an eigenvalue vector A. These
eigenvalue vectors, however, have to satisfy the condition A-A = A%, where



A% assumes exactly one value for any given equation, and therefore *), can
be called eigenvalues. To obtain the generalized eigenfunctions, it is nec-
essary to evaluate the improper integral which occurs in Eq. (2.13) below.
Its regular form as it appears in (2.9) has been known for a long time, but
its improper form and its interpretation required careful analysis in order
to formulate the decomposition theorem.

We turn now to the description of the operator. Given is the sta-
tionary transport equation,

vQ VY +voy = =vo [ o eur.a0a2 + Qr.av),  (11)
{a1}
where
¥ = Yr,Q) is the directional flux, a scalar function;
i is the position vector;
v is a constant velocity in the direction of the unit vector Q;
o is the total macroscopic cross section at velocity v;
c is the net number of neutrons produced per collision
<_ q, +vof)
o
f is the scattering function;
Q is the production of neutrons or photons by sources;

V = grad, operates with respect to r only.

The scattering function is so normalized that!

[ex-ang 0 = 1. (1.2}

We investigate the decomposition of Eq. (1.1) under the following simplifying
assumptions:

a) £ = 1/(4m); i.e., we have isotropic scattering;
b) o is constant; (@ s)

@) ©f5, M) = ),

il
Subsequently, the operator [-d,Q' will mean integration over the entire
unit sphere in the sense defined in Sections 3 and 4.



Let the mean free path 1/5 be introduced as unit length. This is equivalent
to setting 0 = 1 in Eq. (1.1). Since v £ 0, Eq. (1.1) reduces to

Q VY +Y- = ¥(r, Q)d, Q" = 0. (1.4)
4 /{‘Q'} :



2. SEPARATION OF VARIABLES AND THE CHARACTERISTIC EQUATION
We look for all solutions that have the form
pa(.Q) = Rp(r)g,(Q). (2.1)

Substitution of Eq. (2.1) into Eq. (1.4) yields

Q-VRy c ; | 27
L [eana:a (2.2)

under the assumption RA ;! 0, d)A ,«4 0. Since VRA/RA does not depend on
r, it must be proportional to a parameter vector - A, which will be in gen-
eral a complex vector,

VR, /Ry = -4, (2.3)

and therefore

R, = constve—(A.r). (2.4)

Therefore, the right-hand side of Eq. (2.2) is equal to Q-A, and Eq. (2.2)
takes the form

©
(1- 288, - £ fo,ana0 = 0. (2.5)
We normalize dp such that

T ¢ (@)da = «, (2.6)

where k£ is a conveniently chosen, but fixed normalization constant
(e.g., € = 1, or 47T/C). Then, from Eq. (2.5), if the solution is denoted by
R

o _ kC 1
s (2.7)
under the conditions that

QA £1 forall (2.8)

ax.'u? Eq. (2.6) be satisfied. Substitution of Eq. (2.7) in Eq. (2.6) yields a con-
dition for A, namely, the characteristic equation,

d,Q

e e [ _
itz JTi-opn % (2.9)



Definitions 2.1

The set of solutions of Eq. (2.9) satisfying Eq. (2.8) is denoted by
{A°}, and the set of corresponding functions (b?\ will be called regular
eigenfunctions of Eq. (2.5).

Hence, we can write for Eq. (2.1)

0 =P
e

Yy = ¢h(Q), ae{a®} (2.10)
e ¢X is given by Eq. (2.7). The function w%(r,ﬂ) has been so normalized
that %5(0,0) = ¢h(Q).

Consider now the case where, for a given A, Eq. (2.8) is not satis-
fied. Then, at a certain direction Q = Q°, ¢y in Eq. (2.7) is unbounded, and
the meaning of the integral (2.6) must be redefined. Assuming this is done,
we then obtain another characteristic equation with possible solutions for
A, and a set of elementary functions corresponding to Eq. (2.10), but un-
bounded in 2. These functions are, however, a subset of an even wider class
of elementary solutions of the general form (2.1), when we extend the class
of admissible functions to be generalized functions. We extend our function
space by the set of functions &(Q - Qo) having the following definition.

Definition 2.2

Given any function G(2) which is continuous with respect to &, |Q| =l
in a neighborhood D(2) of a given direction Qg, then 8(Q- Q) is defined by

J

D()

G5 (2~ 20)dx 0 = {G‘é}°’ s

Now, we have the improper eigenfunctions (generalized eigenfunctions) as

Ke 1

¢A: 4—7Tm +KG(§(Q-QO), (211)

where

Ae{a:1-q,-a =0} (2.12)

and G is a function possibly of A and Q. Substitution of Eq. (2.11) into

Eq. (2.5) under consideration of Eq. (2.6), and integration with respect to
() over the unit sphere, show that the ¢'s of Eq. (2.11) are weak solutions
indeed. The function G is defined by substituting Eq. (2.11) into Eq. (2.6).
Hence,
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= f d, 9
G:l‘ﬂ s Whohy - (2.13)
An elementary solution corresponding to Eq. (2.11) is

-Ar
v, = N (2.14)

where ¢ jis given by Eq. (2.11), and A is an element from the set (2.12).
The function ¥ is so normalized that Yp(0,Q) = o (Q).

Any linear combination of solutions of the forms of Egs. (2.10) and
(2.14) are again solutions of the linear Eq. (1.4). Therefore, the most gen-
eral solution of Eq. (1.4) which can be represented by a linear combination
of the regular eigenfunctions ¢} (Q) of Eq. (2.10) and the improper eigen-
functions wA(Q) of Eq (2.14) is given by

y(r.0) = [ NN g dnt

d,0 d,ANA(N)Y A, (2.15)
119} oo} ° ) yis 4,

{A: QoA =1}

where {A%}is given by Eq. (2.9), and {®} is the set of all real directions.
The first and second terms on the right-hand side of Eq. (2.15) are given
explicitly by Eqgs. (5.12) and (6.9), respectively, below.

Conjecture

Every solution of the homogeneous Eq. (1.4) in the class of functions
which are integrableZ with respect to {2, and continuous in ]r] < « have a
representation of the form of Eq. (2.15).

; The following sections will be specific as to the meaning of integra-
tion with respect to 2 and A.

—_—

2Set—:' footnote 1.



3. INTEGRATION OF (1-§-4)7!

A. Geometrical Considerations

To evaluate Eqs. (2.9) and (2.13), a specific meaning is required for

 —eifieaz 0
IA—fl_QA (3,11

This integral is invariant under the rotation group & of Q. The complex
vector A can be represented as the sum of a real vector MAeE; and an
imaginary vector i/\; with A;e€ E;; that is,

A = Ay +1ih,. (Definition) (25,.2)

The integral Iy is therefore only a function of

g
Aoy =0 G (Definition) (&8
¥ = cosT! [(Ay A)/(Ay - Ay)]

It turns out to be convenient to choose Cartesian coordinates such that

Ay =y 0,0, 1%
Ay = Ny Bim o, 0, e 305 (3.4)
Q

{cos ¢ sin 0, sin ¢ sin 6, cos O}.
This means that /A, lies on the z-axis, A, lies in the x,z-plane, and Q is a
point on the unit sphere, with 6 and ¢ representing spherical coordinates

(see Figure 3.1).

We define? the inner product § - A = (Q, A) to be

i SR
Q - Ny = X cos 6 (3.5)
Q - A, = X, (cos ¢ sin 6 siny + cos 6 cos ).

The integral I ), expressed by Eq. (3.1), becomes improper when
e @ = @, (3.6)

Separating real and imaginary parts, we obtain the following lemma.

3 Note that this definition differs from the usual definition in complex
inner product spaces, where - A = Q- A -iQ - A,

11
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Lemma 3.1

Given: A= A) +il,. Then the integral I,, expressed by Eq. G,
is improper if and only if
9o el
Q-4; =0,

(B0
for some Q €{Q:| Q| = i

A

e {o,o, I}

15 Sl
L Reference System for the Com-
: f dfd
8/ putation of -0 A
1 o
o
o3 {o.1,0}
sinBsing

{100}

Corollary 3.1

A sufficient condition for I, to be proper is | Ar| < 1. This corol-
lary is evident when we write, by Eqs. (3.5)

’

G o Ay = s B =0

f

which has no solution for | A | < 1,

We denote the directions Q which satisfy Eqs. (3.7) by $,, with the
corresponding polar coordinates 8, and ¢,. Then, by Egs. (3.5)

)

M cos 8, = 1 (3.8)
A2(cos ¢4 sin 6y sin ¥ + cos 6y cos A )F=N0] ((5:5))
Equation (3.8) can be satisfied for any A,

=1



Equation (3.9) is satisfied when

i) Az = 0; (3.10)
and/or

1) MeCos i = (cos eo/sin 6,)(cos 'y/sin e (3.11)

If Eq. (3.11) has a solution ¢, then - ¢, is also a solution of Eq. (2,1 1L) -

We derive now the conditions under which Eqgs. (3.11) and (3.8) are
simultaneously satisfied. We have, from Eq. (3.8),

cos 6, = 1/x; >0. (3.12)
Because 0 =y = m,
sin y= 0 (3,13)

and because of Eqs. (3.11) and (3.12),
cos? ¢y = [1/(}&-1)](::052 'y/s'mZ ) = (3.14)
Therefore, from the second and third parts of Eq. (3, 04Y),
cos?y + sin®y = N s A,
Finally, because of Eq. (3.13),
A siny = 1. (3.15)
We have the following corollary.
Corollary 3.2

Given: A = A; +il,. Then the integral I), expressed by Eq. (BE)»
is improper if and only if

= 1l (where Ay = |44])
and

A 9 = 0 (where A, = |A;]) (3.16)
and/or

g o
ii i = wh e s
(R s iy B = where cos 7Y T ([ | (a7
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These results can be obtained by purely geometrical considerations.
The condition § - A; = 1 is represented by the intersection of the unit sphere
| 2] = 1 and a plane perpendicular to A, with distance 1/>\1 from the origin,
The condition - A, = 0 represents the intersection of the unit sphere and
the plane through the origin and perpendicular to A, (see Figure 3.2). Itis
evident that there are, for the system of Eqs. (3.8) and (3.11),

no solutions when sin y < cos 6,
one solution when sin y = cos 8, = 1/>\1, (3.18)

two solutions when sin y > cos 6,
From Figure (3.2), one can also deduce Eq. (3.11),

cos (£d,) = -cot B, cot . (3.19)

A

Higeess?

Geometric Solution of

We proceed now with the actual e

valuati i ol
Eq. (3.1). ion of I, expressed by

From Eq. (3.5), we conclude that
ks T
d,0
IA:/;# = sin 6 d g et (3.20)
- A . I B cos ¢’ :

1 - )\ cos 6 - i), cos Y cos 6

where

B = - i), sin 7y sin 0. (3.21)



First we evaluate

ST
d¢
T 5 SRZ27
e _/ a+ Bcosd’ ( )
ST
then we evaluate
s
Ip =f I sin 6 de. (3.23)
0
B. Evaluation of Ig
We introduce the transformation
u = tan ¢/2, d¢ = 2du/(l+u?). (3.24)
Then,
S + oo
do¢ 1 Zdu
Il = ———— = . 22
o a+pB cosd a+/31'u 1 +u* B2a
=7 e 1 + u?
+ oo
du
= 3.25
2[(a+5)+(a- i ( )
-0
+ o
2 du
= i 3826
o - B g B if afp. (2]
u
- a-fp

The zeros of the denominator under the integral in Eq. (3.26) are

either a) complex numbers,

a +
N B

W =l

0
or b) real numbers, *u’.

(5.27)

15
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We require the "positive" square root of a complex number 2% to
have a positive real part, such that

\’r/; >Rez > 0. (3.28)

If Re z = 0, the square root is called "imaginary"; if Re z N0 eChe
squareroot is called "negative." We consider first the case where u' is
complex, then the case when the zeros of the denominator in Eq. (3.26) are
real.

a) The integrand of Iy has complex singularities.

In this case, there is exactly one zero of the denominator, viz.,
u+, in the upper half of the complex plane. We can use the residue theorem
to determine Ig from Eq. (3.26). That is,

i R 2mi
R s e G G Bt
eyl
a-p
If we define
(04 3¢
GEEieE (o R a_g, (3.29)
we have
=T
e do¢ = 2T
R (3.30)
We consider the case when B = 0. Then, from Eq. (3.22),
Ig = 27T/OL.

(3.31)

We see that this case is included in Eq. (3.30), since i ) =

s ’
o \/l—accordmg to Eq. (3.29), and so we may assume below that f ;! 0, or
equivalently

Az sin ¥V sin6 # 0. (3.32)

b) The integrand of I g has real singularities.

We distinguish three cases:



1%

(GG f/ 0 and bounded.
(ii) w° = o.
(iii) u° is unbounded.

()t ;( 0 and bounded.

2
In this case, (u%) = (—uo)Z > (0,
Since
0 e AR RS
u i g
the inequality (u®)? > 0 is equivalent to
(atB)/(a-p) <o, (3253

To derive the conditions under which this is true, we write

G (FE 0 eosiElR= N (cost vl cas B0 sin i sin ol
3.34)
@ -fB = (1l-); cos B) -ir, (cos y cos 6 - sin 7y sin 6). (

Then

(a+p)/fla-p) = (a+p)(@-PB)/(la-pl?)

(1=)\y cos 6)2+ A% (cos? 7y cos? @ - sin?y sin?6) - 2iA, (1 - A cos 6) sin y sin 6
(1- ) cos 6)%+ A% cos® (y+6) g

(3., 25)

For this expression to be real, we have, under consideration

of (3.32), the necessary condition

I cos 6 =10 (B%3l6)
For (3.35) to be negative, it is necessary that
cosz‘y cos? B - sin® vy sin® 6 < 0,
or equivalently
(3.37)

sin®y > cos? 8.

If we denote by 8, the angle for which Eq. (3.36) is satisfied,
and consider that 0 < ¥ < m, Eq. (3.37) yields
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sin y > cos 6,, (3.38)

or

Pep Skt oy 5 L (3.39)

which corresponds to the third condition of (

3.18), as the reader may have
anticipated.

Assume now that (3.36) and (3.39) are satisfied; then it is
seen that u® ;{ 0 and bounded, and from Eq. (3.26) we obtain

I 2 s du
To = Gl = [¢ e (u - u0)(u +uo)

T oo
ARCINL ) / ¥ _du -f w4k (3.40)
=3 2u0 e u® L u®

where we applied Cauchy's Principal Value Theorem to the integrals, and
each integral is zero by itself.

(i1) w® = o

In this case, we argue that
(a+p)/(a-p) = 0. (3.41)

We can proceed as in Section (i) above and obtain the follow-
ing necessary conditions for u° to be zero:

1 - XNcos 6 =0

: (3.42)
Apsim = (3.43)
However, the conditions o + BE=N0, o =8 7! 0, yield the
additional condition
Cos 7y = -sin 6 <0, (3.44)
Conversely, from conditions (3.42) and (3.44) follows u° = 0; and from
Tt (8,28, 2 o
400
o 2 f du 5)
= e
Comsi e T d e

1¥e N ithe integral does not exist,



I1S)

If we denote the angle which satisfies (3.42) by 6, then con-

ditions (3.42) and (3.43) correspond to the second condition of Eq. (3.18); and

from (3.44) and (3.19), we obtain the double value +¢° = 0. Hence the un-

boundedness of I is not surprising in this case.
(iii) u® is unbounded.

In this case, we argue that

(a-p)/la+p) =0, (3.46)

and we proceed as in Section (ii) above to obtain the necessary and sufficient

conditions
1- X cos 6 =0,
(3.47)
A sin vy = 1
COE A = ke G (3.48)

Then, from Eq. (3.25),

4 oo
e f S (3.49)
atPfJ o 1+0.u?

i.e., the integral does not exist.

Again, we can find the geometrical equivalent to the con-
ditions (3.47) in the second equation of (3.18); and Eq. (3.19) yields a double
value ¢° = . Egs. (3.47) are the same as Egs. (3.42) and (3.43).

Since it follows from condition (3.47) that

(o + p)a-B) = O,

Eqs. (3.45) and (3.49) can be considered limit cases of Eq. (3.30). There-

fore we can summarize the results of Section B in the following equation:

s 2T P A\ cos 6 ;.[ 1
19 = d ¢ A /a2 2 ot PhNcosh G =R nd A S sin Al
o + ,B cos ¢ 0 for Xl cos 6 = [ and )\l sin Y 2 I
aill (3.50)

where o and P are defined by (3.21), and o? - p?isdefinedby (3.29), unless

G,Z-BZ:O.
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4. FURTHER INTEGRATION OF (1

A. The Function V Z(u)

- Q-0)E

In Section 3 we gave a closed expression for Ig. We must now con-
sider Ig as a function of 6, and determine IA as indicated in Eq. (3.23). It

will be convenient below to consider Ig as a function of cos 6. Therefore we
introduce the notation

[V, = @EE 85
UL =cos g, = l/)\l, ford A =115 (4.1)
Iy(p) = Ig(6).

To set the proper background for the integration of I,u: we discuss
first the function

V2R = (a-p) /2L f e
From Egs. (3.35) and (4.1), we have

(1 -2 gp)® + A3(u2 - sin®y) - 2iX,(1 - A p)ein ¥ sin 8
u Z v 2 14
a-B (1- A )% + A2 cos?(Y +8)

(4.3)

as a function of L. The definition of its square root was given in (3.28) such

that the z®-plane was slit along the negative axis. The behavior of the pos-
itive square root of Eq. (4.3) as a function of K is as follows.

R Ay Tt el immediately from Eq. (4.3) that

Im (a +8)/(a - B) < o,
and hence / (o¢+5)/(oc - B)

is continuous in the interval -1 = Ua= Tl

) T8 O = 0l follows from Eq. (4.3) that, respectively,
8 qp & %
I = =
m OL-B{>}O for “{;}/‘lo- (4.5)
At @o= p,,

a+p[>
Re " {2}0 faro siny{é}l_ (4.6)



We set

e T
B o - sin® Y
i ‘ cos?(Y +6) l (4.7)

As L approaches [, from both sides, we have in the limit

P for u = Ko £ 0 and i U < Il

/e B ip for u Lo -0
el e and M1 sin?Y > 1.
-ip oo UL = g 1 (O

(4.8)

The square root is not defined for A, sin ¥ = 1. Hence, (4.8) is con-
tinuous in the interval -1 = y =<1 for A, sin ¥ < 1, but has a discontinuity
at L = U, in the case A, sin ¥ > 1.

Since (¢ -B) is a continuous function in [, we can conclude that
Z(p) is continuous in -1 = p = 1 for {Xl < 1}, and {Xl = I, vy ehE < 1};
but has a discontinuity at g = u, for {A; > 1, A, sin ¥ > 1}. In the case of
Mg wa Y = I (W) = 0, sl VZ([X) is therefore also continuous.

We are now in a position to attribute signs to \/Em_)

From Egs. (4.2) and (3.29), it follows that

Vz(p) = Va? - B2 = V(a+B)(e- B), (4.9)
with the sign of the square root determined by Eq. (4.2). The function
\/2(—u) can only change its sign at a point (. where Re () = 0y @F

where \/Z(1) is discontinuous. The first alternative is equivalent to the
condition that both

X = Rez(u) <0

and (4.10)

i

1

ImZ () = 0,
or that Z crosses the negative axis.

From Egs. (3.34) and (4.1), it follows for Z = X + iY that

1

X = (1-x,u) + A%(sin2Y-L3);

(4.11)

1]

B —2 )\ cosi (G0 e

%l
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We enumerate now the cases where Y = g

(i) w=0 1If u=0,then Y =0butX > g, Hence Eq. (4.10) is not
satisfied, and VZ does not change sign at [ =0,

(ii) 1 - A;u = 0. This case is only possible when Ay . Then
K =g, and X < 0 requires A, sin Y < 1. Hence \/_ does change its sign
oS =N INEnd A s in oY < Whenx =1, and A sin ¥ > 1, \VZ has a
discontinuity at 4 = , and will change its sign also.

(iii) A, cos ¥ = 0. In this case, Y is identically zero. If W = (1),

then
VZ =1-Xpu (4.12)
and therefore changes its sign only when A, > 1 at 4 = .

If cosY =0, then X = (1-A1)% + A3(1-42) > 0, and VZ does not
change its sign.

(iv) We can also conclude from (4.11) that Z = 0 for -1 = =1 only
ifu =ugand A, sin¥ =1, as already noted in Section 3.

The sign of the square root of Z(4) is now determined by substituting
=%l in Eq. (4.2). We obtain immediately from Eq. (3.34) that

(@+B)/(a-B) =1, forp = =1; (4.13)
and

O e :(llll):’-ikzcosy, for K = +1. (4.14)

Hence, by the discussion above, we have for

A< 1, W VZ for -1 =y =1; (4.15)

and for A, =1,

+
VZ ={\/Z for -1 = RS (4108
vz oy Ui 2 o =1 i

Vz(1, -0 = VZ(k+0)  for X, sin ¥ < 1,

+ -
Wz, =) = - VZ(ug+0)  for Apsin Y > 1,
VZ(uy+0) = o

(4.16a)

(4.16Db)

for Ay sy ol (4.16c)



where the last three equations are a consequence of Eq. (4.8) and Re-
mark (iv) above.

We are now ready to integrate IN with respect to u.

B. Integration of I,

Comparison of Eqs. (3.50), (4.1), and (4.9) shows that
- 2 N (4.17)

for Xl‘u;! I, A, = 1and Ay sin ¥V < 1.

.

Bane g gim Y = 1 el g o =211, I, is unbounded. For ANSing e
and Ay = 1, I ,is zero. If we use Riemannian integration, we have, under
consideration of Egs. (4.15), (4.16), and (3.50), two cases, a) and b), which
can be integrated.

gy ek & 1y (enE

A =1 and A sin ¥V < 1:

+1 du

= . 18
Iy 2iT : F—Z(#) (4.18)
)y = Oy alm Y S

o= el

1
dpu
Iy = 2m F \VZTH—) +fu0+0 \'/—Z_(H) } (4.19)

The situation Xl =1, A, sin ¥ = 1, leads to an improper integral which
must be obtained by a limiting process. This process is carried through
in Section C.d) below.

To obtain an analytic expression for the desired integral, we observe
from Eq. (4.11) that Z = X + 1Y can be written as
) o= eyu = 2ol 4 @ (4.20)
where
a = A2 - A%+ 2iMA, cos Y,
b = A +iX, cos 7, (4.21)

c =1+ A3sin? V.

23
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Then the indefinite integral of Z(Ly=12 4
‘/‘-é\/% = 71—; loglap - b+ Va \/Z ] + const, (4.22)

which can be easily verified.

The sign of \/a will be so chosen that the right-hand side of
Eq. (4.22) is bounded when Z-'/2 is bounded.

a) To obtain the integral (4.18), we must evaluate VZ at {4 = I
under the conditions (4.15) and (4.16). This can be done using Eqgs. (4.20)
and (4.21), or more simply by noting Eqgs. (3.34). Then

z(£1) = [(@ +p)(a-p)] = 41
= QFr, FiN, cos V)’
= (1%b)%

Hence, by Eqgs. (4.15) and (4.16),

)

(£1) = 1 F b, (4.23)

and by (4.22), we obtain for (4.18)

&
e

T a-b+\a(l-b)
vz B a2 -b+ \/al(l+h)

Ly (1+Va)(Va-b)
Va 18 (T-VR)(Va b e

Sk
NS
1

We assign the negative sign to Va. In this case, even for A, >0, (\/- - b) %
0 and can be canceled.

Now we define the inner product A% = NEAE= (A,A) to be, for
A = \5) iAzy
A2 = (A +i0,)(4, + i)
= A} - A%+ 2iA A, (4.25)

= A - X2+ 2iX %, cos V.

Comparing this expression with (4.21), we see that

A% = a.
(4 26)
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Therefore, substituting

VA v

(4.27)
in Eq. (4.24), yields?
G +IId—ﬂ1 /it
Ly salimeamn | = = LERREE /e 228 T

SV \/—tanh' 7%
Fem b 2 1 amal B =0 O S Sy

(4.28)
where A? is defined by (4.25), and the A?-plane is cut along the negative
axis.

From the final equation, we see that the sign of \/_ is of no practical
interest; i.e., replacing \/A? by -\/A? leaves Eq. (4.28) unchanged

b) To obtain the integral (4.19), we must evaluate VZ at [
and [ = [y £ 0. We obtain, from Egs. (4.11) and (4.16)

Z(jo £ 0) = T, \/sin*v - uj, (4.29)
while
Z(+1) = 1%b, (4.30)
as in Eq. (4.23). Therefore, by Eqgs. (4.1), (4.21), and (4.26)
Ho-0 +1
f dL+f =
=il \/z Mot 0 \/z
. o-b+\£XZVSinZV-u§+ 1 ; B i s /A (1 =)
= == —— lo
S b ) Vo °E i, b= Va A ikl -
e e R Va)( Va-b) Aul-rp/A +icos 7+ (1/x)Va Vg sin? ¥ - 1
e 0 T ot ieos ¥ - (1A )VEVAT sin®Y - 1]
(4.31)
Uy T VAZ -2, +iX cos Y+ Va /A% sin? V-1
x a = = E -X +iX, cos ¥ - \/— N e gy il (4.32)
We note that
— e g mEE ) = TR e S el (4.33)

4Note that VA% is a complex scalar and not the vector A
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however, we do not use this identity in our final equation.

(4.32) and (4.19),

+1
d,9
BNl T d
IA‘/l_Q-A f_l Tudu

2 N N/NBN/ RS inE ‘>‘z

Thus, from

+ i)\, cos ¥

= == :
T VIAENVAZ sin? VT 4 A,

for {\, =1, and X, sin ¥ > 1},

(4.34)
- iA; cos ¥

where A% is defined by (4.25), and the A2-plane is cut along the negative

axis.

Use of Eq. (4.33) would give Eq. (4.34) a more symmetric appear-

ance, but no additional insight.

C. Limit Cases

The integral I, reduces for A, sin ¥ = 0 to Eq. (3.31).

a) If we set A, = 0, then from (3.21)

2 1+

== A=
+1 dp A log I - oz
IA=ZTrf T =
= 2K A+l
—— ey fors =
Ay A

1 -

according to results which were obtained in the case of

(4.35)

I

plane geometry.

The Cauchy Principle value was used to obtain the second result.

b) If we set sin ¥ = 0, it follows from (3.21) that

o8

el
du 2 o 2y
.= :
A Zﬂf o
-1

- = : 1
>‘1i1>‘z)ﬂ Ayt A, <l -A %

where the upper sign corresponds to the value cos V = +1
sign corresponds to V = -1.

If we let A, go to zero in Eq. (4.36), we have

= (4.36)

and the lower



0 fomEnre

14+ M\
=n,

1

1

2T
Lirn ST/ = —_X log
A,—o0

+ < im for cos Y

and A, > 1.

-im foricosh/m=u=1

(4.37)

Hence, I in Eq. (4.35) is the arithmetic mean of I, in Eq. (4.37).

c) Now we investigate Eq. (4.28) and obtain, by (4.25),

OF = fors =il

+ im for cos ¥ >0
Eatel a2
~iqr for cos ¥ <0

1+\/1;E 27

11m \/_Zlgl-\/A_Z_Xl

N
T

(4.38)
Therefore, Eq. (4.37) is a special case of (4.38). The case sin W=
corresponds exactly to Eq. (4.37).

We consider now the case cos 7V = 0.
low. Note that cos 7V = 0 implies

POES in = i

and therefore Eq. (4.28) reduces to

N

N = \/XZ—leogl-\ﬁxz 2 forlcosiia= L0 (4.39)

As X, > 0, Eq. (4.39) reduces to Egs. (4.37) and (4.35) for A, < 1.

d) Ina similar manner, we investigate Eq. (4.34), where A} =1

27 Akl VARewt Y o 1 Gdces Y
: . . 4.40
Lm Iy =5log 57 70 falsin?Y -1 -icos” )

)\Z—>0

always. We have

The limit depends on the angle V. For cos Y =0, Eq. (4.40) reduces
to Eq. (4.35) for A; =1. One can also consider I, in Eq. (4.35) as the mean

value of I, in Eq. (4.40) with respect tol®

As (X, sin ¥ - 1) = 04,

IR/
i (4.41)

= il :
T Yy

This case will be important be-

21
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Hence Eq. (4.34) changes continuously to Eq. (4.28). From
Eqs. (4.40) and (4.41), we conclude

lim lim Iy = lim lim I, (4.42)
A,>0 A, sin ¥V—>1+ Asin) == een

and the result coincides with Eq. (4.38) for A; > 1.

If ¥~ 0, it follows from ); sin ¥V > 1 that A; = ~. In this case,

from Eq. (4.34), lim Lo

A > o
Similarly

lim IA ==
>LZ—’00

For the sake of completeness, we mention that the limit A; = 0
does not cause any difficulties, since in

lim VA% = +HA,

A0

either sign may be used in Eq. (4.28).



5. SOLUTION OF THE CHARACTERISTIC EQUATION
AND THE REGULAR EIGENFUNCTIONS

In Eqgs. (2.7) to (2.9), we defined the regular eigenfunctions and the
characteristic equation. In Corollary 3.2, we asserted that eigenfunctions

are regular only if
el g LR

or (5.1)
B =0, amel A A, el 2 gl Sl
We shall see below, in Eq. (5.6), that for regular eigenfunctions,

A < 1 is always true.

In Section 4 we showed that the integral I,, appearing in the charac-
teristic Eq. (2.9) and satisfying conditions (5.1), is given by Eq. (4.28).
Therefore, we can write the following expression for the characteristic
equation.

Characteristic Equation

= (c/z)tanh‘lz = 0; «/A—Z = =, el (5.2)

This is the same equation in z as was found for the characteristic
equation in plane geometry, and has two solutions, A, and -y, for given c
as follows:

2 NOR G ] N s el amel v < e
0;

g e=1 o0 andiNG= (5.3)
c) 1< c<® Xpisimaginary, and 2§ < 0.

Hence, A, can be considered known for given c, and thus

(0} = {n: 0% =22 va—~>qr 7 1} (Definition) (5.4)

e 2
This means that every vector A that satisfies A = )\% and § -4 7_/ 1
for each (, is an element of {AO} Since X}’; is real, we have, by (4.25), the

condition
W =g = e MAscos ¥ = 0, (5.5)

for A> = A3. The condition Q A % ] for each (, yielded the conditions (5.1).

These conditions impose only restrictions on the magnitudes )\; and ), of the

real and imaginary components A, and A,, respectively, of A = A + 1A,

29
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and its mutual angle v in E;. From Eq. (5.5), we see that if A, # 0, then
cos y = 0. Therefore, by (5.1b),

S (5.6)

We treat the three cases of (5.3) separately in the following
paragraphs.

2 < @

From Eq. (5.5), we obtain

Mo W OB (5.7a)

and from (5.3a) and (5.6), we obtain

Mg Eh g g U= K =0 (5.7b)

B & = 1

By the same equations as used in a), we obtain

Moo= Ag; (5.8a)
OF= Ay <1

(5.8b)
0 Sy < 0,

c) l<§_<°°

Again, by the same equations as used in a), we obtain

2,
;

A o= X%' [>‘n
Q=00 < I alien, <rduiin el (5.9b)

Because of (5.3c), we can write Eq. (5.9a) as

A= AE (5.9¢)

to conform with Eq. (5.7a).
The relationship between \; and ), is illustrated in Figure (5.1).

We mentioned at the beginning of Section 3 that Ip is invariant under
the rotation group ® on Q. This is also true of t
Hence, if A e{A°}, then R A C{A°} also.
so is any element of {CLRUA(Q)}

he characteristic equation.
Hence if (b&(Q) is an eigenfunction,



A
|
14
| | Ig0ke, B 1l
c<I |
: | Relationship between \; and A, for
N | ll @ & @ s Ly ane e >l
ey
c=1 | |
c>l | |
| .
0 I | A2
|

The functions ¥(r,{) that can be represented by the regular eigen-
functions (2.7) are given by the first integral in Eq. (2.15). We select a
convenient reference direction from {1}, say w® + iu®, such that, by
Egs. (5.7a) and (5.9¢),

AY + iA9 } : ;
50110)

= rt2i w0+ inu

wO = A?/Xl’ }
(5.11)

= Ag/xz.

I

Lo

where

It should be noted that w? - u® = 0 since cos ¥ = 0. An element of

R is denoted by R. Then

RAO(Q).
® (5.12)

N = Al N
; ’ f d;RA%(R A

AO(A)?I/[on‘*A :/; _{O o © =1 }dxz
5 =

{n°} Pl e © = 1

The order of integration on the right-hand side of this equation may

be interchanged.

For applications, it may be convenient to choose for the reference

direction an orthonormal system; e.g.,

31
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o = i, 0, @l
= o, 1, 0
w® = {0, 0, 1}

(5.13)

Then A} is in the "z-direction," and A? in the "x-direction," and an
element R is given by the transformation matrix that transforms the or-
thonormal system (5.13) into another orthonormal system (u, v, w); i.e.,
R is an orthogonal transformation. The reduction of [ A( AO)I//ORAO(Q)dg.R
to a triple integral of the Riemannian type will depend on the geometric
properties of the problem at hand.



6. GENERALIZED EIGENFUNCTIONS AND THE GENERAL
SOLUTION OF THE HOMOGENEOUS EQUATION

In Eq. (2.11) to (2.14) we defined the generalized eigenfunctions.
In Section 4, parts B. b) and C.d), we determined the integral term in
Eq. (2.13) to be I, as given by Eq. (4.34). As has been anticipated, G is
a function of only Aj, Az, and ¥, and does not depend on the particular di-
rection of Q° or the complex vector A. It depends only on the relative po-
sition of the projections of the real and imaginary parts of /A into E;. Hence

G = G(D) = G, Az, Y) = G(| Ay, [22], A D2), (6.1)
or explicitly

G =1-(c/am) Ip, (6.2)
where I, is given by Eq. (4.34) for Ay, =1 and A; sin7y = 1.

To obtain all generalized
eigenfunctions which are unbounded
at Q°, we observe that, by (2.12),

1-Qo¢" A =0. (5.3)

This means that the end points of
the real part of the complex vector
A lie in the plane

Gy = 1 (6.4)

which is perpendicular to, and
passes through the end point of
Qo, as illustrated in Figure (6.1).
The end points of the imaginary
part of A lie in the plane

@y o My = 0 (6.5)

which is perpendicular to §, and

passes through the origin, as illus-

trated also in Figure (6.1). We see

therefore that these vectors /A sat-

Fig. 6.1. Representation of the Com- isfy the conditions given in Lem-
plex Vectors A Which ma 3.1 and Corollary (3.2) on
Satisfy Qo - A = 1 pages 12 and 13.

33
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Definition 6.1

Q All vectors lying in the real plane Qo « A, = 0 shall be denoted by

{A"°}.

With this definition, every vector A, satisfying Eq. (6.5) is defined
by

e (6.6)
and every vector A, satisfying (6.4) is defined by

Ny = Gy 4 A?", (6.7)

since the two planes (6.4) and (6.5) are parallel.

Therefore, the second term in Eq. (2.15) has the representation

f d2 8% f dy A A(D) YA (R) =
{0} {A: QoA=1}
it 4, ifPo i A(Q + 1oy 1430) Yp@) =
f{Qo} e f{AQ"} : /{AQO} 2 A
(6.8)
. - 9.0
K ‘/{.AQ} d, Ny ‘/{‘AQ} d, Ay, A(A) G(A) exp—(r,Q + A +iA5°) +
+ §o Qoexn- (=, Vot Aoy iA.QO)
K/ d,Q f Gl f 4,45 8 IQ 5—— A(L),
€} NG (a0} I (00 AT )
(6.9)

o D el e
where A = 0 4+ A"+ iA3 in A(A) and G(4) of the first part of (6.9). G is re-

duced further by Eq. (6.1) [or Eq. (6.12) below].

The first term in (6.9) was obtained from (6.8) by interchanging $ and

€y in Definition (2.2) and corresponds to the second term of C’)A(Q) in
1855 (2, 01)

If the integration over Q° is carried out in polar coordinates, we can
replace Definition (2.2) by
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5(2-9Q0) = 8(p-po) 8(d-¢a) (6.10)

and thus reduce the two-dimensional § -function to the product of two one-
dimensional 6-functions in a natural way.

In both terms of (6.9), the order of integration with respect to A?o
and A3°0 can be interchanged. The actual integration in the {AQO }-plane can
be carried out in any way convenient for the specific problem at hand, e.g.,
in two-dimensional polar coordinates or two-dimensional Cartesian
coordinates.

Further simplifications are possible, e.g., as follows: Let us denote
the angle between AIQ" and A3’ by 'yQ°, as indicated in Figure (6.2). Now

ol D (T,
o, 10 (6.11)

A1 Ay cos Y = )\90 ngo cos VQO.

Q Q Q
Hence, A;, Az, and y are determined by A °, A, 0 and v °, respectively,
and we can write

o0 o). (6.12)

Thus the first integral in (6.9) can be represented by

00 o0 27
f 4,18 f 4,A9 A(A) G(8) e=(=:2) :f ngZ/ dng ay% Gfﬂ ar? AR AL) e-(r RIAD)
{AQ} {AQ} o o 0 R0

(6.13)
Qs : Qo L
where R0 is an element of the plane rotation group R *“%, and A is the ref-
erence vector for the rotation such that §g - Al = i, Xll = O (=l 2)) e
gl yilo.
Qo xfl°
A,
Qohi=1
i Fig. 6.2
= S0 =
QJ Example of Specific Co-
ordinates for Integration
of (6.9)
Y. )\90 5
0
QoAz =0 y$o &
(o2t )\2

A=Az
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Hence the most general solution which can be obtained for Eq. (1.4)
by superposition of solutions (2.1) is Eq. (2.15), where the integrals appear-
ing in that equation are explicitly given by Eq. (5.12) and (6.9). In manipu-
lating these expressions, one should bear in mind that G(/) may become
zero. The integral expressions for the superposition of the generalized
eigenfunctions may be improper integrals. These integrals will be consid-
ered as existing if a finite neighborhood of the singularity exists for which
the integral converges as the limit of the neighborhood converges to zero.
In other words, we admit Cauchy principal-value type integrals over higher
dimensions.
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7. REDUCTION TO THE KNOWN CASE OF PLANE GEOMETRY

The requirement that %(r,{) be a plane solution of Eq. (1.4) means,
by definition, that ¥(r,{) be constant for all r whose end points lie on
parallel planes. We rotate our coordinate system so that these planes are
orthogonal to the x-axis. It follows then, from Egs. (2.10) and (2.14), that

A
vy T3
and
o _,
e
if and only if
A, =Ny =0 ()

Hence the elementary functions have the form

7#?& e_AXqu})\(Q), (regular eigenfunctions);

(752)

-A
Uy =C XXQBA (2), (generalized eigenfunctions).

We must now submit the regular eigenfunctions to the conditions (5.5)
which resulted from the characteristic equation. Because of Egs. (B2l
(3.3), and (7.1),

1

|Ren, | = xi

IImA Ao

x|

We show that either A, or A, must be zero. From Eq. (7.1) it
follows that sin ¥ = 0 since A,y is necessarily parallel to A,y when all
other components of A are zero. This means cos Y = +l. But then the

second equation of (5.5) requires

AN, = 0. Gk,

From Egs. (5.3) and the first equation of (5.5), we deduce that

) By = for 0 < ¢ <1, (A, real);

0
b)) A = A =0 for ¢ = 1, (Ao = 0);
0

el ok = for 1< ¢ <w, (o imaginary).
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Hence the regular elementary functions are

PR = efhoX gj(Q),

where

ol cedy | il
e T

This is in agreement with Reference 1 and consequently also with

Reference 2.

Next we must reduce the generalized eigenfunctions to the case of

plane geometry.

From Eq. (7.1) it follows, as before, that sin ¥ = 0 since A, and
N,y are necessarilyparallel. But then Eqs. (6.4) and (6.5) cannot be satis-
fied simultaneously in E;, unless A, = 0. This, however, leads to the same
results as were obtained in the case of plane geometry as shown by
Eq. (4.35). Therefore, the case of plane geometry as already known is
contained in our general expansion formula and exhibits a much simpler
structure.



)

8. UNSOLVED PROBLEMS

A If we denote by A' and A" any two vectors A associated with the
eigenfunctions ¢} or ¢, we obtain from Eq. (2.5) the relation

(A" - A") f Qe in = 0, dor &4 A (8.1)

In the case of plane geometry, this equation leads to the well-
known orthogonality relations given in References 1 and 2. We see at a
glance, however, that relation (8.1) is not suited to determine the coefficient
functions in the expansion (2.15). Therefore we ask the following unanswered
questions:

1) Does a weight function W(Q) exist such that

m n w Q
fW(Q)dJA Pp' 420 = % 5—(—_,\,('7%.7) (' - &) 42

N(A', Av) 8(A" - A")? (8.2)

2) How should §(A' - A") be defined?
When these questions are answered in a positive sense, we ask fprther:
3) What function is W(Q)? How is it determined?

4) What is F in the identities

L(D)dpd,A w(Q)q;A' d, zf A(N) fW(Q)q}Ad)A'dZQ Gl sk 1T
a\{nr} {1} (8.3)

In other words: What is the effect of interchanging the integration
with respect to A and Q? One must bear in mind that ¢ y¢) are all possible
combinations of regular and generalized eigenfunctions. It is therefore
likely that we have not only one weight function but at least three different

weight functions W(Q).
Then arises the question of completeness.

5) In which function space is the set of eigenfunctions as developed

in this report complete?

6) Do these eigenfunctions form a minimal base, or is there

redundancy ?
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